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We started by looking at the pendulum whose point of suspension is forced to rotate on a 
circle of radius 𝑅 at a fixed angular velocity 𝜔.  The key step is to write down the (𝑥,𝑦) 
coordinates of the bob in terms of a minimum number of parameters and generalized 
coordinates.  We did this by describing the location of the bob starting from the center axis of 
the circle (chosen to be the origin) and describing the location of the point of suspension, and 
then adding the vector position of the bob relative to the point of suspension.  The location of 
the particle is specified by a single variable, 𝜑, which describes the deviation of the bob from 
the vertical.  This location (𝑥,𝑦) was then differentiated with respect to time to get the vector 
velocity (in terms of 𝜑, 𝜑̇, and time 𝑡), and the kinetic energy was constructed from that.  
The potential energy is entirely due to gravity, so the Lagrangian can be constructed.  The 
Euler-Lagrange equation yields the equation of motion for the single generalized coordinate 
𝜑.  The resulting motion can be quite complicated. 

If a generalized coordinate does not appear in the Lagrangian it is said to be ignorable or 
cyclic.  The corresponding generalized momentum is conserved.  This leads to 
simplifications in the description of the motion. 

We derived a new quantity known as the Hamiltonian.  The Lagrangian was engineered 
specifically to reproduce Newton’s second law in component form, however it does not have 
a simple physical interpretation.  By taking the total time derivative of the Lagrangian (𝑑ℒ

𝑑𝑑
) 

we could create a new quantity ℋ that is time-invariant, subject to the condition that  𝜕ℒ
𝜕𝜕

= 0 
(i.e. that the Lagrangian has no explicit time dependence), and it is found to be ℋ =
∑ 𝑝𝑖𝑛
𝑖=1 𝑞̇𝑖 − ℒ, where 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖.  If, in addition, there is a time-independent relationship 

between the Cartesian coordinates and the generalized coordinates, 
𝑟𝛼 = 𝑟𝛼(𝑞1, 𝑞2, … 𝑞𝑖, … 𝑞𝑛), then the Hamiltonian has a simple interpretation as the total 
mechanical energy 𝑇 + 𝑈. 

The process of “doing quantum mechanics” proceeds as follows.  Start with the classical 
Lagrangian for the problem.  Derive the Hamiltonian for the case of a time-independent 
Lagrangian, and express the Hamiltonian in terms of just the coordinates and their conjugate 
momenta (calculated as 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖).  Proceed to quantize this Hamiltonian (see the Wiki 
page on Canonical Quantization, or Chapter IV of Dirac’s The Principles of Quantum 
Mechanics).  

http://en.wikipedia.org/wiki/Canonical_quantization
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We considered the two-body problem of two objects interacting by means of a 
conservative central force, with no other external forces acting.  This problem eventually 
simplifies from that of 6 degrees of freedom (for 2 particles in three dimensions) to 
essentially a single particle moving in one dimension!  The Lagrangian can be simplified by 
adopting the generalized coordinates: relative coordinate 𝑟 = 𝑟1 − 𝑟2, and the center of mass 
coordinate 𝑅�⃗ = (𝑚1𝑟1 + 𝑚2𝑟2)/𝑀, where 𝑀 = 𝑚1 + 𝑚2 is the total mass.  The two-particle 

Lagrangian simplifies to ℒ�𝑅�⃗ , 𝑟� = 1
2
𝑀𝑅�⃗ ̇ 2 + 1

2
𝜇𝑟̇2 − 𝑈(𝑟), where 𝜇 = 𝑚1𝑚2/𝑀 is called 

the reduced mass because it is smaller than either 𝑚1 or 𝑚2.  Because this Lagrangian is 

independent of 𝑅�⃗ , it means that the center of mass (CM) momentum 𝑀𝑅�⃗ ̇  is constant.  The 
other Lagrange equation gives 𝜇𝑟̈ = −∇��⃗ 𝑈(𝑟), which is Newton’s second law for the relative 
coordinate. 

Taking advantage of the CM conserved momentum, we can jump to the CM (inertial) 
reference frame, where the CM is at rest, and the two particles are always moving with equal 

and opposite momenta (this follows from the fact that 𝑅�⃗ ̇ = 0 in the CM reference frame).  In 
this reference frame, the Lagrangian simplifies to ℒ = 1

2
𝜇𝑟̇2 − 𝑈(𝑟).  Because only central 

forces act, the net torque that the particles exert on each other is zero, hence the total angular 
momentum of the particles (𝐿�⃗ ) as seen in this reference frame is conserved.  Writing the sum 
of the angular momenta of the two particles, as seen in the CM reference frame, in terms of 
the generalized coordinates, we find 𝐿�⃗ = 𝑟 × 𝜇𝑟̇, which is the same as the angular 
momentum of a single particle of mass 𝜇.  Because 𝐿�⃗  is conserved (including its direction), 
the vectors 𝑟 and 𝑟̇ must remain in a fixed two-dimensional plane throughout the motion.  
This means that the motion is strictly two-dimensional!  Note that purely 2D motion (and the 
concept of a trajectory) is prohibited in quantum mechanics, hence the reduced mass particle 
in the hydrogen atom problem spreads into a “cloud” of probability density, very roughly 
speaking. 

Now we have to solve the remaining two-dimensional motion problem with this 
Lagrangian: ℒ = 1

2
𝜇𝑟̇2 − 𝑈(𝑟).  Going over to polar coordinates for 𝑟, we get ℒ =

1
2
𝜇(𝑟̇2 + 𝑟2𝜑̇2) − 𝑈(𝑟), as derived earlier.  There are two Lagrange equations that follow 

from this Lagrangian.  First we note that 𝜑 is an ignorable coordinate, hence the angular 

momentum of the ‘particle’ is conserved: 𝜕ℒ
𝜕𝜑̇

= 𝜇𝑟2𝜑̇ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  This is in fact just the z-

component of the total angular momentum vector 𝐿�⃗  that we calculated above.  We give it a 
new name, ℓ, because it is a constant of the motion (you may now recognize the notation 
from the quantum treatment of the Hydrogen atom).  The other Lagrange equation (for 𝑟) 
gives 𝜇𝑟̈ = 𝜇𝜇𝜑̇2 − 𝑑𝑑/𝑑𝑑.  The first term on the RHS is the centrifugal force for the 
‘particle’.   
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